clean-tool.ru

Общие свойства получения металлов. Способы получения металлов и сплавов

Металлы находятся в природе преимущественно в виде соеди­нений. Только металлы с малой химической активностью (благо­родные металлы) встречаются в природе в свободном состоянии (платиновые металлы, золото, медь, серебро, ртуть). Из кон­струкционных металлов в достаточном количестве имеются в природе в виде соединений лишь железо, алюминий, магний. Они образуют мощные залежи месторождений относительно бо­гатых руд. Это облегчает их добычу в больших масштабах.

Поскольку металлы в соединениях находятся в окисленном состоянии (имеют положительную степень окисления), то полу­чение их в свободном состоянии сводится к процессу восста­новления:

Этот процесс можно осуществить химическим или электро­химическим путем.

При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (II), а также водород, активные металлы, кремний. С помощью оксида углерода (II) получают железо (в доменном процессе), многие цвет­ные металлы (олово, свинец, цинк и др.):

Восстановление водородом используется, например, для по­лучения вольфрама из оксида вольфрама (VI):

Применение в качестве восстановителя водорода обеспечивает наибольшую чистоту получаемого металла. Водород используют для получения очень чистого железа, меди, никеля и других ме­таллов.

Способ получения металлов, в котором в качестве восста­новителя применяют металлы, называют металлотермическим . В этом способе в качестве восстановителя используют активные металлы. Примеры металлотермических реакций:

алюминотермия:

магниетермия:

Металлотермические опыты получения металлов впервые осу­ществил русский ученый Н. Н. Бекетов в XIX в.

Металлы наиболее часто получают восстановлением их окси­дов, которые в свою очередь выделяют из соответствующей при­родной руды. Если исходной рудой являются сульфидные мине­ралы, то последние подвергают окислительному обжигу на­пример:

Электрохимическое получение металлов осуществляется при электролизе расплавов соответствующих соединений. Таким путем получают наиболее активные металлы, щелочные и ще­лочноземельные металлы, алюминий, магний.

Электрохимическое восстановление применяют также для ра­финирования (очистки) «сырых» металлов (меди, никеля, цинка и др.), полученных другими способами. При электролитическом рафинировании в качестве анода используют «черновой» (с при­месями) металл, в качестве электролита - раствор соединений данного металла.

Способы получения металлов, осуществляемые при высоких температурах, называют пирометаллургическими (по-гречески pyr - огонь). Многие из этих способов известны с древних времен. На рубеже XIX-XX вв. начинают развиваться гидро­металлургические способы получения металлов (по-гречески hydor-вода). При этих способах компоненты руды переводят в водный раствор и далее выделяют металл электролитическим или химическим восстановлением. Так получают, например, медь. Медную руду, содержащую оксид меди (II) CuО, обрабатывают разбавленной серной кислотой:


Для восстановления меди полученный раствор сульфата меди (II) либо подвергают электролизу, либо действуют на раствор порошком железа.

Гидрометаллургический способ имеет большое будущее, так как позволяет получать продукт, не извлекая руду из земли. (Сравните достоинства гидрометаллургического способа получе­ния металлов с подземной газификацией угля.)

11.3. Химические свойства металлов

11.4.

Различные виды встречающегося в природе минерального сырья, пригодного для получения металлов в промышленном масштабе, называются рудами.

В основе всех методов выделения металлов из руд лежит восстановление их по уравнению

Men+ + n е → Me0 ,

где n – валентность металла.

В качестве восстановителей применяют графит, оксид углерода (II) СО, водород, активные металлы, электрический ток и др.

Существуют следующие способы получения металлов из руд.

1) пирометаллургические − карботермический, металлотермический;

2) электрометаллургические;

3) гидрометаллургические.

Пирометаллургический способ заключается в применении высоких температур в процессе восстановления металла. Чаще всего это процессы восстановления более активными металлами: Al, Mg, Ca, Na и др. (металлотермия), кремнием (силикатотермия), восстановление водородом, гидридами металлов и т. д.

Карботермический способ – восстановление оксидов металлов углеродом или оксидом углерода СО при высоких температурах:

Cu2 O + C→ 2Cu + CO

В доменных печах в качестве восстановителя применяют оксид углеро-

Fe2 O3 + 3CO → 2Fe + 3CO2

В металлотермическом методе в качестве восстановителей используют более активные металлы при высоких температурах (Al, Mg, Ca и др.). Этим методом получают титан, уран, ванадий:

TiCl4 + 2Mg → Ti + 2MgCl2

Не все металлы можно получить восстановлением углеродом или оксидом углерода (II) СО. Например, реакция Cr2 O3 + 3CO = 2Cr+3CO2 , G ° = 274,6 кДж/моль, не может протекать даже при довольно высоких температурах, в то время как алюмотермия легко осуществима.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Если в качестве восстановителя применяют алюминий, то этот метод получил название алюмотермии:

Cr2 O3 + 2Al→ 2Cr + 2Al2 O3

Некоторые металлы (например, марганец) с углеродом образуют карбиды, поэтому в данном случае более экономичным методом является сили-

катотермия:

MnO2 + Si Т → Mn + SiO2

Восстановление водородом проводится, как правило, тогда, когда необходимо получить сравнительно чистый металл. Водород используется, например, для получения чистого железа, вольфрама из WO3 , рения из

NH4 ReO4 , осмия из (NH4 )2 OsCl6 и др.

К пирометаллургии относят обычно и хлорную металлургию . Сущность метода заключается в хлорировании сырья в присутствии восстановителя или без него и дальнейшей переработке полученных хлоридов металлов, например:

TiO2 + C + 2Cl2 = TiCl4 + CO2

TiCl4 + 2Mg = Ti + 2MgCl2

Преимуществами метода хлорирования являются: высокая скорость процесса, полнота использования сырья, возможность разделения большого числа компонентов за счет различной летучести и термической устойчивости хлоридов.

Электрометаллургия – технология, основанная на применении электрической энергии для восстановления металлов.

Электрометаллургия включает процессы получения металлов методами электротермии и электролиза.

В первом случае электрический ток служит источником создания высоких температур (например, выплавка стали в электропечах); во второим – используется для непосредственного выделения металлов из соединений.

Такие активные металлы, как K, Na, Са, Mg, Al и др., получают электролизом расплавов их соединений. Например, при электролизе расплава хлорида натрия получают металлический натрий и газообразный хлор:

расплав соли NaCl, анод С (графит):

(− ) К Na+ + е → Na0 − восстановление,

(+) А 2Cl− − 2 е → Cl2 − окисление.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Получение алюминия – сложный процесс, сопряженный с большими трудностями. Основное исходное сырье − оксид алюминия Al2 O3 – не проводит электрический ток и имеет очень высокую температуру плавления (около 2 050 о С). Поэтому электролизу подвергают расплавленную смесь криолита Na3 AlF6 и оксида алюминия. Смесь, содержащая около 10 % мас. Al2 O3 плавится при 960 о С и обладает электропроводностью, плотностью и вязкостью, наиболее благоприятными для проведения процесса. Для дополнительного улучшения этих характеристик в состав смеси вводят добавки AlF3 , CaF2 , MgF2 . Благодаря этому проведение электролиза оказывается возможным при 950 о С.

Электролизер для выплавки алюминия представляет собой железный кожух, выложенный изнутри огнеупорным кирпичом. Его дно (под), собранное из блоков спрессованного угля, служит катодом. Аноды (один или несколько) располагаются сверху: это алюминиевые каркасы, заполненные угольными брикетами. Электролизеры устанавливают сериями, каждая серия состоит из 150 и большего числа электролизеров.

При электролизе на катоде выделяется алюминий, а на аноде – кислород. Алюминий, обладающий большей плотностью, чем исходный расплав, собирается на дне электролизера; отсюда его периодически выпускают. По мере выделения металла, в расплав добавляют новые порции оксида алюминия. Выделяющийся при электролизе кислород взаимодействует с углеродом анода, который выгорает, образуя СО и СО2 .

Гидрометаллургия – технология, осуществляющая получение металлов из руд с помощью водных растворов специальных реагентов (кислот, щелочей, солей), которые переводят металлы из нерастворимого в руде состояния в водорастворимое. Далее металл из водных растворов выделяют либо восстановлением его более активным металлом, либо электролизом (если металл неактивный), либо экстракцией органическими соединениями.

Например, рассмотрим получение меди:

CuO (т) + H 2SO 4(ж) = CuSO 4(ж) + H 2O (ж)

Из полученного раствора медь можно выделить, например, восстановлением железом:

CuSO4 + Fe = Cu + FeSO4

Гидрометаллургическим методом отделяют Ag, Au, Pb и другие металлы от пустой породы, содержащейся в руде:

4Au + O2 + 8NaCN + 2H2 O = 4Na + 4NaOH

2Na + Zn = Na2 + 2Au

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

11.4. Способы получения металлов из руд

Особое место в гидрометаллургии занимает экстракция – извлечение ценного компонента раствора с помощью растворителя, не смешивающегося с раствором. В настоящее время создана целая отрасль металлургии, использующая различные химические экстрагенты при выделении металлов из смесей.

11.5. Получениеметалловвысокойстепеничистоты

С повышением чистоты металлов значительно улучшаются их характеристики. Они становятся более пластичными, тепло- и электропроводными, труднее подвергаются коррозии и т. д.

Получение металлов высокой чистоты представляет собой очень сложную задачу, решенную далеко не для всех металлов. Существует ряд методов очистки, рассмотрим некоторые из них.

При вакуумной плавке – металл расплавляют в вакууме, что позволяет избавиться от ряда легколетучих и легкоплавких примесей различных металлов, неметаллов, газов. Этот метод дает не очень большую степень чистоты металлов.

Термическое разложение иодидов металлов применяют для очистки очень тугоплавких металлов, образующих летучие соединения с йодом, таких, как цирконий, титан, хром и др. Очищаемый металл помещают в тигель

и добавляют йод. При нагревании происходит взаимодействие металла с йо-

дом. При этом образуется летучий йодид металла (например, TiJ4 ), который, соприкасаясь с раскаленной сеткой из чистого титана, разлагается под действием высокой температуры, и очищенный титан оседает на ней:

TiJ 4 1 300− 1 500 D С→ Ti + 2J 2

В результате получается чистый металл, а йод улавливается и снова возвращается в процесс.

Данный метод позволяет селективно выделять отдельные металлы из их смесей, получать металлы достаточно высокой степени чистоты.

Электрохимическое рафинирование основано на применении процес-

сов электролиза с растворимым анодом, например, при очистке черновой меди от примесей.

В электролитическую ванну наливают раствор сульфата меди CuSO 4 и устанавливают массивный анод из черновой меди, а катод из рафинированной меди в виде тонкой пластины. В ходе электролиза медь анода переходит

в раствор, а затем восстанавливается на катоде:

раствор CuSO4 , анод – черновая медь, катод – рафинированная медь,

(+)А Cu0 – 2 е = Cu2+ (в раствор),

(–)К Сu2+ + 2 е = Cu0 (остается на катоде).

Химия. Учеб. пособие

11.5. Получение металлов высокой степени чистоты

Электролиз ведут с малыми скоростями, чтобы обеспечить селективное осаждение меди на катоде, а примеси других металлов остались в раствореэлектролита.

Электролиз ведут до тех пор, пока анод полностью растворится, а катод из тонкой пластины превратится в массивный брусок чистой рафинированной меди.

Зонная плавка позволяет получать металлы очень высокой степени чистоты.

Слиток металла в виде стержня, помещенного в тигель, передвигают с малой скоростью (5− 10 мм/ч) через электропечь. При этом расплавляется очень небольшой участок слитка, находящийся в зоне нагрева в данный момент. По мере передвижения тигля расплавленная зона перемещается от одного конца слитка к другому.

Процесс очистки основан на том, что растворимость примесей в жидкой фазе значительно выше, чем в твердой. При медленном перемещении слитка, а следовательно, зоны расплава вдоль слитка, примеси извлекаются расплавленной зоной и перемещаются в конец слитка.

При многократном повторении описанного процесса получают металл высокой степени чистоты с примесями, собравшимися в одном конце слитка, который отрезают и подвергают дальнейшей очистке с целью более полного выделения из них чистого металла.

Контрольныевопросыизадания

1. Каковы особенности электронного строения атомов металлических элементов? Чем объясняется относительно слабая связь валентных электронов атомов металлов с ядром?

2. Какие элементы относятся к металлам в периодической системе элементов? Как изменяются их свойства по периоду, по группе?

3. Чем обусловлены характерные физические свойства металлов? От

чего они зависят?

4. Что представляет собой металлическая связь? За счет чего она осуществляется?

5. Какие металлы нельзя хранить на воздухе? Почему? Написать уравнения реакций этих металлов с кислородом. Как называются получающиеся соединения?

6. Какие металлы устойчивы к окислению кислородом воздуха? Почему?

7. Каков кислотно-основной характер оксидов металлов? Как он меняется в периоде с увеличением порядкового номера элемента?

8. Как зависит характер оксидов металлов от степени окисления элемента, образующего эти окcиды?

9. Назвать способы получения металлов из руд.

Химия. Учеб. пособие

11. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТАЛЛОВ

Контрольные вопросы и задания

10. Какие вещества применяются в качестве восстановителей металлов

в пирометаллургическом методе?

11. Как влияет степень чистоты металла на его физические свойства?

12. Назвать методы получения чистых металлов, их особенности.

Компетенциистудента

знать классификацию металлов и нахождение их в природе; физические и химические свойства металлов; способы получения металлов из руд − пирометаллургические, электрометаллургические, гидрометаллургические; методы получения металлов высокой степени чистоты;

уметь отличать особенности электронного строения металлов от неметаллов; определять и объяснять причину изменения химической активности металлов по группам и периодам таблицы Д. И. Менделеева; проверять экспериментально химическую активность металлов при взаимодействии их с кислотами, кислородом воздуха и другими окислителями; объяснять характерные физические свойства металлов с точки зрения металлической связи; составлять уравнения окислительно-восстановительных процессов при получении металлов электрометаллургическим, гидрометаллургическим и другими способами; объяснять суть процесса очистки металлов методом электролитического рафинирования и записывать уравнения соответствующих химических реакций.

Химия. Учеб. пособие

Цель урока: познакомить с природными соединениями металлов и с самородными металлами; дать понятие о рудах и металлургии, рассмотреть такие ее разновидности, как пиро–, гидро–, электрометаллургия, термическое разложение соединений металлов, продемонстрировать лабораторные способы получения металлов и с помощью фрагментов медиалекции ознакомить с промышленным производством металлов.

Оборудование: компьютер, видеопроектор, коллекция “Минералы и горные породы”, прибор для получения газов, лабораторный штатив, пробирки, спиртовка, фарфоровые ступки.

Реактивы: оксид меди(II), соляная кислота концентрированная, цинк гранулированный, термит (смесь порошков алюминия и оксида железа (Ш), раствор сульфата меди и железный гвоздь.

I. Организационный момент. Проверка домашнего задания.

1. Написать уравнения реакций взаимодействия между веществами:

а) Li, Na, Ca, Fe c O 2 , Cl 2 , S, N 2 , C:

б) Na, Ca, Al c H 2 O;

в) Zn c H 2 SO 4 ; Al c HCl;

г) Zn c CuSO 4 ; Al c NaOH; Be c KOH.

2. Расставить коэффициенты, найти окислитель и восстановитель в уравнениях реакций:

Cu + HNO 3 (P) -> Cu (NO 3) 2 + NO + H 2 O

Cu + HNO 3 (K) -> Cu (NO 3) 2 + NO 2 + H 2 O

Na + HNO 3 -> NaNO 3 + N 2 O + H 2 O.

3. Все уравнения реакций учащиеся сверяют с экраном, где спроецированы данные уравнения реакций (фрагмент медиалекции “Общие свойства металлов”). (CD) Обобщение общих химических свойств металлов проводится по схеме “Общие свойства металлов”.

4. Завершим рассмотрение схемы, мы не разобрали нахождение металлов в природе и способы их получения.

II. Природные соединения металлов.

Могут ли металлы находиться в природе в свободном (или самородном) состоянии? Если могут, то, какие это металлы?

Ответ очевиден, это металлы низкой химической активности. Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

Металлы в природе встречаются в трёх формах: 1) в свободном виде встречаются золото и платина; золото бывает в распыленном состоянии, а иногда собирается в большие массы? самородки. Так в Австралии в 1869 году нашли глыбу золота в сто килограммов весом. Через три года обнаружили там же еще большую глыбу весом около двухсот пятидесяти килограммов. Наши русские самородки много меньше, и самый знаменитый, найденный в 1837 году на Южном Урале, весил всего около тридцати шести килограммов. В середине XVII века в Колумбии испанцы, промывая золото, находили вместе с ним тяжелый серебристый металл. Этот металл казался таким же тяжелым, как и золото, и его нельзя было отделить от золота промывкою. Хотя он и напоминал серебро (по-испански? plata), но был почти нерастворим и упорно не поддавался выплавке; его считали случайной вредной примесью или преднамеренной подделкой драгоценного золота. Поэтому испанское правительство приказывало в начале XVIII столетия выбрасывать этот вредный металл при свидетелях обратно в реку. Месторождения платины находятся и на Урале. Оно представляет собой массив дунита (изверженная горная порода, состоящая из силикатов железа и магния с примесью железняка). В нем содержатся включения самородной платины в виде зерен. 2) в самородном виде и в форме соединений могут находиться в природе серебро, медь, ртуть и олово; 3) все металлы, которые в ряду напряжений находятся до олова, встречаются только в виде соединений.

Чаще всего металлы в природе встречаются в виде солей неорганических кислот: хлоридов? сильвинит КСl NaCl, каменная соль NaCl;

нитратов – чилийская селитра NaNO 3 ;

сульфатов – глауберова соль Na 2 SO 4 ? 10 H 2 O, гипс CaSO 4 2Н 2 О;

карбонатов – мел, мрамор, известняк СаСО 3 , магнезит MgCO 3 , доломит CaCO 3 MgCO 3 ;

сульфидов? серный колчедан FeS 2 , киноварь HgS, цинковая обманка ZnS;

фосфатов – фосфориты, апатиты Ca 3 (PO 4) 2 ;

оксидов – магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк, содержащий различные гидроксиды железа (III) Fe 2 O 3 Н 2 О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

III. Получение металлов.

Какой основной химический процесс лежит в основе получения металлов?

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Но прежде чем восстановить природное соединение металла, необходимо перевести его в форму, доступную для переработки, например, оксидную форму с последующим восстановлением металла. На этом основан пирометаллургический способ . Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических? кокс, оксид углерода (II), водород; металлических? алюминий, магний, кальций и другие металлы. .

Демонстрационный опыт 1. Получение меди из оксида с помощью водорода.

Cu +2 O + H 2 = Cu 0 + H 2 O (водородотермия)

Демонстрационный опыт 2. Получение железа из оксида с помощью алюминия.

Fe +3 2 O 3 +2Al = 2Fe 0 + Al 2 O 3 (алюмотермия)

Для получения железа в промышленности железную руду подвергают магнитному обогащению:3Fe 2 O 3 + H 2 = 2Fe 3 O 4 + H 2 O или 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 , а затем в вертикальной печи проходит процесс восстановления:

Fe 3 O 4 + 4H 2 = 3Fe + 4H 2 O

Fe 3 O 4 + 4CO = 3Fe + 4CO 2

Просмотр медиалекции. (CD)

Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте:

CuO + H 2 SO 4 = CuSO 4 + H 2 O, затем проводят реакцию замещения

CuSO 4 + Fe = FeSO 4 + Cu.

Демонстрационный опыт 3. Взаимодействие железа с раствором медного купороса.

Таким способом получают серебро, цинк, молибден, золото, ванадий и другие металлы.

Электрометаллургический способ.

Это способы получения металлов с помощью электрического тока (электролиза). Просмотр фрагмента медиалекции. (CD)

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

NaCl -> Na + + Cl ?

катод Na + + e > Na 0 ¦ 2

анод 2Cl ? ?2e > Cl 2 0 ¦ 1

суммарное уравнение: 2NaCl = 2Na + Cl 2

Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия? электролитом.

Al 2 O 3 -> AlAlO 3 -> Al 3+ + AlO 3 3–

катод Al 3+ +3e -> Al 0 ¦ 4

анод 4AlO 3 3– – 12 e -> 2Al 2 O 3 +3O 2 ¦ 1

суммарное уравнение: 2Al 2 O 3 = 4Al + 3O 2 .

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

Термическое разложение соединений.

Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-200 0 , образуя пентакарбонил: Fe + 5CO = Fe (CO) 5

Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 250 0 карбонил разлагается, образуя порошок железа: Fe (CO) 5 = Fe + 5CO.

Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа. Еще более глубокой степени очистки железа (до 99,9999%) можно достичь методом зонной плавки.

Таким образом, мы познакомились с природными соединениями металлов и способами выделения из них металла, как простого вещества.

IV. Закрепление темы.

Выполнить тестовые задания:

1. Укажите справедливые утверждения: а) все элементы d- и f-семейств являются металлами; б) среди элементов р-семейства нет металлов; в) гидроксиды металлов могут обладать как основными, так амфотерными и кислотными свойствами; г) металлы не могут образовывать гидроксиды с кислотными свойствами.

2. В каком ряду приведены символы соответственно самого твердого и самого тугоплавкого металлов? а) W, Ti; б) Cr, Hg; в) Cr, W; г) W, Cr,

3. Укажите символы металлов, которые можно окислить ионами Н + в водном растворе кислоты: а) Cu; б) Zn; в) Fe; г) Ag.

4. Какие металлы нельзя получить в достаточно чистом виде, восстанавливая их оксиды коксом? а) W; б) Cr; в) Na; г) Al.

5. С водой только при нагревании реагируют: а) натрий; б) цинк; в) медь; г) железо.

6. Какие утверждения для металлов неверны: а) металлы составляют большинство элементов Периодической системы; б) в атомах всех металлов на внешнем энергетическом уровне содержится не более двух электронов; в) в химических реакциях для металлов характерны восстановительные свойства; г) в каждом периоде атом щелочного металла имеет наименьший радиус.

7. Отметьте формулу оксида металла с наиболее выраженными кислотными свойствами:

а) K 2 O; б) MnO; в) Cr 2 O 3 ; г) Mn 2 O 7 .

8. В каких парах обе из реакций, схемы которых приведены ниже, позволяют получить металл? а) CuO + CO-> и CuSO 4 + Zn -> б) AgNO 3 -> и Cr 2 O 3 + Al в) ZnS + O 2 и Fe 2 O 3 + H 2 -> г) KNO 3 -> и ZnO + C.

9. В атомах каких металлов в основном состоянии на энергетическом d- подуровне содержится пять электронов? а) титана; б) хрома; в) сурьмы; г) марганца.

10. Какой минимальный объем (н. у.) оксида углерода (II) нужен для восстановления 320 г оксида железа (III) до магнетита? а) 14,93 л; б) 15,48 л; в) 20,12 л; г) 11,78 л.

Список используемой литературы

  1. О. С. Габриелян “Химия 9 класс”. М. “Дрофа”, 2000 год.
  2. О. С. Габриелян, И. Г. Остроумов “Настольная книга учителя химии 9 класс”. М. “Дрофа”, 2002 год.
  3. Сост. В. А. Крицман “Книга для чтения по неорганической химии”. М. “Просвещение”, 1984 год.
  4. В. И. Соболевский “Замечательные минералы”. М. “Просвещение”, 1983 год.
  5. А. С. Федоров “Творцы науки о металле”. М. “Наука”, 1980 год.
  6. А. Е. Ферсман “Занимательная минералогия”. Свердловское издательство, 1954 год.
  7. Ю. В. Ходаков “Общая и неорганическая химия”. М. ”Просвещение”, 1965 год
  8. 2 CD “ Химия 7– 11 класс”.
  9. CD “Уроки химии Кирилла и Мефодия 8– 9 класс”.

Технология производства металлов и сплавов

Технология производства металлов и их сплавов называется металлургией . Металлургию подразделяют на черную – производство железа и его сплавов и цветную – производство остальных металлов

Сырьем для получения металлов служат руды. Рудами называют горные породы, которые технически возможно и экономически целесообразно перерабатывать для извлечения содержащихся в них металлов.

Как правило, производство металла происходит в два основных этапа:

Предварительная подготовка сырья.

В процессе предварительной подготовки сырья важной стадией является обогащение руды – удаление примеси пустой породы (например, кварца, полевого шпата и др.). После обогащения в руде увеличивается содержание полезного компонента.

Чтобы очистить руду от пустой породы, используют физические методы разделения смесей веществ, основанные на различии свойств компонентов смеси. При обогащении железной руды магнетит (Fe 3 O 4) отделяют от пустой породы с помощью магнита .

Некоторые руды можно обогащать с помощью метода флотации , основанного на различии в смачиваемости полезного компонента руды и пустой породы.

Многие металлы встречаются в природе в виде сульфидных руд. Тогда на первом этапе такое сырье подвергают обжигу . Например, при обжиге железного колчедана образуются оксид железа (II), который поступает на следующий этап производства, и диоксид серы: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + +8SO 2

2. Восстановление самого металла из сырья .

На втором этапе проводят окислительно-восстановительную реакцию, в результате которой образуется металл. В качестве восстановителя используют уголь (кокс), монооксид углерода (СО) и водород. В некоторых случаях восстановление проводят путем электролиза.

Способы получения металлов и сплавов

Металлы и сплавы получают различными способами. (от греч. «пиро» - огонь и металлургия).

1. Пирометаллургический способ (от греч. «пиро» - огонь и металлургия). Этим способом производство металлов и сплавов основывается на использовании тепловой энергии, которая выделяется в процессе сгорания топлива или протекания химических реакций в сырье. Во время сгорания топлива выделяется тепловая энергия и образуется CO. Тепловую энергию используют для разогрева и расплавление сырья, a CO - для восстановления металлов из их соединений (оксидов). Пирометаллургическим способом получают чугуны в доменных печах, стали в мартеновских печах и т.д.

2. Электрометаллургический способ. В процессе электрометаллургического способа металлы и сплавы получают в дуговых, индукционных и других типах электрических печей. В электрических печах сырье нагревают до более высоких температур, чем в ходе пирометаллургического способа. Сырье плавится очень быстро.

3. Плазменный способ. Суть плазменной металлургии заключается в том, что при температуре 10 000 С оксиды металла превращаются в плазму с определенной степенью ионизации. Поскольку энергия ионизации атомов металлов меньше энергии ионизации атомов кислорода, то в такой плазме атомы металла ионизируются, а атомы кислорода остаются нейтральными.

Из полученной смеси с помощью магнитного поля изымают ионы металла. В плазменных печах получают вольфрам, молибден, синтезируют карбид титана и др. Этот способ используют для получения очень качественных металлов и сплавов.

4. Химико-металлургический способ. Этот способ сочетает химические и металлургические процессы. Таким способом производят титан: из титановой руды получают четыреххлористый титан (ТіСІ 4), который восстанавливают с помощью магния (Mg).

5. Гидрометаллургическим способом. При этом способе металлы из руд, концентратов и отходов производства изымают с помощью растворителей. Затем из этих растворов электролизом получают металлы. Так производят и рафинируют цветные металлы: медь, цинк, никель, кобальт, хром, серебро, золото и т.д.

Производство металлов гидрометаллургическим способом состоит из следующих стадий: подготовка руды к растворению; растворение руды и концентрата в растворителе; очистка полученного раствора от вредных для электролиза примесей; электролиз.

6. Порошковая металлургия. Этот способ объединяет процессы, в результате которых изготавливают порошки металлов и неметаллических соединений, из которых прессованием (для придания формы и размеров) с последующим спеканием изготавливают изделия (заготовки, детали и т.д.).

Как получают металлы?

Чистые металлы из руд

За редким исключением металлы встречаются в природе не в чистом, самородном состоянии, а в виде химических соединений. Эти соединения в ходе истории Земли возникли благодаря реакциям металлов с другими химическими элементами. В большинстве случаев руды представляют собой оксиды, сульфиды или карбонаты (табл. 6). Металлсодержащие полезные ископаемые в земной коре содержат одновременно и нежелательные минеральные составные части, безрудную или жильную породу. Поэтому методами флотации, измельчения, грохочения и агломерации руды должны быть сначала приведены к состоянию, удобному для дальнейшей металлургической переработки.

Чтобы добыть чистые металлы из руд, их подвергают соответствующему химическому разложению. В качестве примера возьмем оксид, из которого путем восстановления вначале получают черновой загрязненный материал, который далее путем рафинирования перерабатывают до чистого или особо чистого металла.

На металлургических производствах либо неокисленные руды путем нагрева в присутствии кислорода воздуха и обжига переводят в оксиды металлов, либо необходимые соединения металлов удаляются из руды выщелачиванием с помощью подходящих растворителей, таких как вода, разбавленные кислоты, щелочи, растворы солей (гидрометаллургия).

Далее оксиды металлов можно восстановить веществом, обладающим большим сродством к кислороду, чем получаемый материал. К ним относятся, например, углерод или его оксид при высоких температурах (карботермический метод), алюминий (алюмотермия) или кремний (кремнетермия). Эти способы объединены под общим понятием пирометаллургии.

В электрометаллургии металл может быть получен электролитически из расплава или водного раствора его соединения. Известно также и термическое разложение соединений металлов. Черновой металл, образующийся вначале во всех вышеназванных методах, очищается затем путем избирательного окисления, электролитическими методами, выпариванием и повторной конденсацией или зонной плавкой.

На основании этих принципов были разработаны самые разнообразные технологические варианты получения металлов. Мы рассмотрим в дальнейшем те из них, которые применяются для производства наиболее важных металлических материалов.

Чугун-продукт доменной печи

Для производства чугуна в настоящее время служат преимущественно оксидные руды в виде агломерата или кусков, которые восстанавливают в доменных печах с помощью углерода или его оксида. Доменная печь (24) имеет высоту до 40 м; в ее самом широком месте, распаре, диаметр достигает от 3,5 до 10 м. С колошниковой площадки в печь послойно засыпают металлическое сырье с добавками (шихту) и кокс. Кокс служит для протекания химической реакции восстановления и в то же время помогает создать необходимую температуру, которая непосредственно в зоне реакции, в заплечиках, достигает почти 2000 °С. Подаваемый в печь воздух предварительно нагревается в воздухоподогревателях (кауперах) до 800 °С, поступает по кольцевому трубопроводу через дюзы (фурмы) в доменную печь и стремится вверх навстречу потоку металлического сырья и кокса. Загрузочная масса постоянно пополняется из колошника. При восстановлении в ходе металлургического процесса возникают жидкое железо, которое науглероживается присутствующим коксом, и шлаки. Жидкие чугун и шлаки собираются в горне, причем, ввиду своей небольшой плотности, шлак плавает на металле. Шлаки через шлаковые летки постоянно удаляют из печи, а чугун периодически, через 2-4 часа, отбирают через летку в нижней части печи.

Доменная печь работает непрерывно 10-15 лет. Из нее получают чугун, содержащий 3,543% С, 1-3% Si, 0,5-1,5% Мп, 0,05-0,1% S и 0,05-0,1% Р, а также шлаки. Этот побочный продукт используют при производстве гравия, мелкого щебня, материала для мостовых, цемента, шлаковой ваты. Колошниковый газ, который через колосник выходит нагретый до 300-400 °С, поступает на обогрев воздухоподогревателей. Доменный чугун поступает либо в чугуносмеситель и перерабатывается дальше в жидком виде на сталеплавильных заводах, либо в литьевую машину, в которой получают твердые чугунные плашки, поступающие далее на сталелитейные заводы или на литейное производство.

От мартеновского способа к прямому восстановлению

Сталью называют железоуглеродные сплавы с содержанием углерода менее 2%. В чугуне содержание углерода составляет более 2,5%.

Сущность получения стали состоит в том, что путем избирательного окисления из доменного чугуна удаляют часть углерода и другие нежелательные элементы. Важным процессом в производстве стали поэтому является так называемая переделка чугуна. Под этим понятием объединены все реакции окисления углерода и других спутников железа (кремний, марганец, фосфор, сера), происходящие внутри металлургической печи в полученном там или введенном расплаве доменного чугуна и металлолома. К необходимому для этого воздуху примешиваются для окисления топочные газы и кислород.

Все важнейшие в настоящее время способы производства стали можно классифицировать так:

Способы производства стали

Прямое восстановление

Горновые способы

Конвертерный способ

При мартеновском способе металлическая шихта (чугун и металлический лом) в твердом или жидком виде находится в лоткообразном очаге, вдоль которого бьет длинный нагретый до 1900 °С факел. Это факел образуется при сгорании генераторного газа в потоке подогретого воздуха (принцип регенеративной топки). Мартеновские печи работают многие месяцы без перерывов. Их вместимость составляет от 10 до 600 т стали, которую в зависимости от размеров печи и особенностей технологии выпускают из печи в виде готового расплава через 5-20 часов. Необходимый для переделки чугуна в сталь кислород присутствует в печи в химически связанном состоянии в виде оксида углерода или оксидов металлов, содержащихся в руде.

Производство стали с помощью электроэнергии происходит чаще всего в электродуговых и реже в индукционных печах. Здесь металлическая засыпка тоже находится в плоском очаге. Между тремя вводимыми сверху графитовыми электродами и металлической шихтой возникают электрические дуги. Электродуговые печи эксплуатируются многие месяцы, а их вместимость колеблется от 5 до 100 т стали, для изготовления которой требуются от 4 до 10 часов.

В конвертере (25) металлическая шихта постоянно находится в жидком состоянии. Кислород поступает либо из воздуха, который продувается снизу через расплав (нижнее дутье), либо в виде чистого кислорода через небольшую форсунку нагнетается поверх материала (верхнее, или кислородное дутье). Вследствие очень интенсивной окислительной реакции необходимая теплота выделяется в ходе процесса в конвертере, так что отпадает необходимость в подводе дополнительного горючего. Вместимость таких конвертеров лежит в пределах от 5 до 100 т, а время изготовления стали составляет от 20 до 60 минут.

Большая часть нелегированной стали производится сейчас мартеновским способом. При более раннем конвертерном способе (методы Томаса и Бессемера) получается также нелегированная сталь, которая, однако, обогащена азотом и потому имеет невысокое качество. Современные способы воздушного или кислородного дутья позволяют получать стали, не уступающие по качеству мартеновским. Методы с использованием электричества дают возможность производить нелегированные стали высшего качества, а также низко- и высоколегированные. Приложение 3 позволяет познакомиться с классическими и современными способами производства стали.

Готовую сталь большей частью отливают в виде слитков круглого, квадратного или прямоугольного сечения, из которых затем на прокатном стане получают заготовки (листы, штанги, профили). Небольшую часть стали перерабатывают непосредственно в литейных цехах в фасонное стальное литье (например, детали машин).

Новейшим направлением в производстве стали является прямое восстановление приготовленной железной руды газом-восстановителем, минуя доменные процессы. При этом возникает губчатое железо, состав которого в отличие от доменного чугуна очень близок к стали.

В ГДР нелегированные стали производятся в основном мартеновским способом, а при получении легированных применяются электродуговые печи. Старый конвертерный метод практически потерял свое значение. Прогрессивные методы воздушного и кислородного дутья уже нашли свое применение в ГДР и в перспективе станут играть при производстве стали все большую роль.

Получение алюминия электролизом

Используемые в промышленности цветные металлы, такие как алюминий, медь, магний, цинк, свинец, ввиду многообразия руд, содержащих их, получают самыми различными способами. Однако каждый из них основан на одном из перечисленных выше принципов получения металлов. Рассмотрим подробнее электротермию на примере получения алюминия.

Алюминий получают из бокситов-руды, содержащей около 55-65% А12О3, не более 28% Fe2O3 и до 24% SiO2. Измельченный, высушенный и перемолотый боксит превращают в алюминат натрия. Это осуществляется либо воздействием на него едкого натра под давлением в 6-8 раз больше атмосферного (способ Бауера), либо путем спекания с содой во вращающихся трубных печах (способ Левига). Из раствора алюмината можно осадить гидроксид алюминия, который затем в таких же печах при 1300-1400°С превращается в чистый глинозем (А12О3). После растворения полученного таким образом глинозема в соли (криолит) начинается важнейшая стадия процесса получения алюминия, электролиз расплава (26). При этом на дно электролизной ячейки выпадает шлаковый алюминий, из которого путем переплавки получают чистый алюминий (до 99-99,8% А1). Другой специфический способ электролиза приводит к получению сверхчистого алюминия (99,99% А1).

Загрузка...